How Many BTU's Do I Need For Snow Melt?

How Many BTU's Do I Need For Snow Melt?

Important Factors

In order to determine how many BTU's you require for your snow melting system, you really need to consider only a few major items.  This considerations will take into account how crucial it is to have no snow and ice.  It will also take into account the cost factor of designing your system.
  1. Snow-Free Area Ratio - What is the acceptable amount of accumulation on your heating surface?  Some critical locations cannot have any, such as hospital emergency areas.  Others are less crucial like residential patios.  The less acceptable for accumulation of course means more energy requirements.
  2. What is your location (see list below).
  3. What % of snow falls do you want to be handled by your system.  If you want to make sure that you never ever see snow, then you'll want to use 100%.  In a residential application, you may not want to have a system so large that it can handle a freak blizzard.  

Snow-Free Area Ratio

When designing a snow melting system, an engineer may specify the amount of allowed snow accumulation as the Snow-Free Area Ratio.  There are three different levels.  
  1. 1 - A Snow-Free Area Ratio of 1 is defined as system that melts all snow as it falls with NO allowed accumulation.
    1. Hospital emergency areas
    2. Helicopter landing pads
    3. Parking garage ramps
  2. 0.5 - A Snow-Free Area Ratio of 0.5 is defined as a system with partial snow accumulation on the slab but not all areas.
    1. Steep residential driveways
    2. Commercial sidewalks
    3. Loading docks
  3. 0 - A Snow-Free Area Ratio of 0 is defined as system that allows snow accumulation.  These systems operate the snow melting system from a cold start resulting in the lowest energy consumption costs and the longest times to start the snow melting.
    1. Flat residential driveways
    2. Patios
    3. Residential sidewalks

New York City BTU Requirements

Table 1 Frequencies of Snow-Melting Surface Heat Fluxes at Steady-State Conditions*
Location
Snowfall Hours per Year Snow-Free Area Ratio, Ar Heat Fluxes Not Exceeded During Indicated Percentage of Snowfall Hours from 1982 to 1993, Btu/h · ft2
75% 90% 95% 98% 99% 100%
New York, NY, JFK Airport 61 1 91 134 164 207 222 333
0.5 63 93 118 145 164 325
0 38 68 86 113 133 316


United States Major City BTU Requirements



Location

Snowfall Hours per Year

Snow-Free Area Ratio, Ar

Heat Fluxes Not Exceeded During Indicated Percentage of Snowfall Hours from 1982 to 1993, Btu/h · ft2

75%

90%

95%

98%

99%

100%

Albany, NY

156

1

89

125

149

187

212

321

0.5

60

86

110

138

170

276

0

37

62

83

119

146

276

Albuquerque, NM

44

1

70

118

168

191

242

393

0.5

51

81

96

117

156

229

0

30

46

61

89

92

194

Amarillo, TX

64

1

113

150

168

212

228

318

0.5

71

88

108

124

142

305

0

24

46

62

89

115

292

Billings, MT

225

1

112

164

187

212

237

340

0.5

64

89

102

116

128

179

0

22

33

45

60

68

113

Bismarck, ND

158

1

151

199

231

275

307

477

0.5

83

107

124

148

165

243

0

16

30

39

60

73

180

Boise, ID

85

1

58

79

100

126

146

203

0.5

38

52

66

80

89

164

0

22

31

40

53

62

164

Boston, MA

112

1

96

137

165

202

229

365

0.5

65

95

112

149

190

365

0

37

75

93

121

172

365

Buffalo, NY

292

1

115

166

210

277

330

570

0.5

68

97

127

164

188

389

0

23

39

55

93

112

248

Burlington, VT

204

1

91

130

154

184

200

343

0.5

58

78

92

113

128

343

0

23

40

55

78

94

343

Cheyenne, WY

224

1

119

172

201

229

261

354

0.5

70

97

111

132

149

288

0

16

37

52

77

100

285

Chicago, IL, O’Hare International Airport

124

1

96

126

153

186

235

521

0.5

58

77

94

113

137

265

0

23

38

53

75

83

150

Cleveland, OH

188

1

85

124

157

195

230

432

0.5

52

73

92

118

147

235

0

23

37

47

69

92

225

Colorado Springs, CO

159

1

89

135

167

202

219

327

0.5

57

82

99

124

140

218

0

23

45

61

87

112

165

Columbus, OH, International Airport

92

1

71

101

123

149

175

328

0.5

45

60

71

87

95

184

0

15

30

45

60

62

135

Des Moines, IA

127

1

120

174

208

255

289

414

0.5

74

102

120

149

180

310

0

24

46

69

94

108

231

Detroit, MI, Metro Airport

153

1

92

130

156

192

212

360

0.5

57

77

94

118

134

227

0

23

38

47

75

89

194

Duluth, MN

238

1

123

171

201

238

250

370

0.5

71

97

114

131

142

213

0

22

32

46

68

77

196

Ely, NV

153

1

67

97

116

134

162

242

0.5

44

66

83

111

129

241

0

23

45

67

97

112

240

Eugene, OR

18

1

59

110

139

165

171

224

0.5

47

77

93

119

122

164

0

30

53

70

102

120

164

Fairbanks, AK

288

1

91

121

144

174

202

391

0.5

52

68

78

94

108

200

0

15

23

31

40

48

87

Baltimore, MD, BWI Airport

56

1

87

139

172

235

282

431

0.5

69

108

147

200

238

369

0

46

84

119

181

214

306

Great Falls, MT

233

1

123

171

193

233

276

392

0.5

71

93

107

129

144

210

0

17

31

45

60

75

143

Indianapolis, IN

96

1

95

134

158

194

215

284

0.5

58

80

96

116

124

209

0

23

38

52

83

99

209

Lexington, KY

50

1

81

108

123

150

170

233

0.5

49

65

74

85

95

197

0

16

30

39

46

55

162

Madison, WI

161

1

99

138

164

206

241

449

0.5

61

82

98

129

163

245

0

23

39

60

91

113

194

Memphis, TN

13

1

106

141

172

200

206

213

0.5

75

96

115

118

130

157

0

40

75

76

90

97

123

Milwaukee, WI

161

1

101

135

164

196

207

431

0.5

62

83

101

128

147

246

0

23

46

68

98

120

239

Minneapolis-St. Paul, MN

199

1

119

169

193

229

254

332

0.5

73

99

114

138

154

287

0

23

45

61

91

113

245

New York, NY, JFK Airport

61

1

91

134

164

207

222

333

0.5

63

93

118

145

164

325

0

38

68

86

113

133

316

Oklahoma City, OK

35

1

117

168

215

248

260

280

0.5

72

101

123

133

144

208

0

24

46

68

78

113

190

Omaha, NE

94

1

108

148

189

222

259

363

0.5

65

89

105

128

135

186

0

23

38

60

90

100

136

Peoria, IL

91

1

95

139

166

201

227

436

0.5

58

83

99

119

130

250

0

23

38

53

76

92

228

Philadelphia, PA, International Airport

56

1

94

129

154

208

246

329

0.5

65

90

112

162

185

267

0

38

63

79

111

150

225

Pittsburgh, PA, International Airport

168

1

83

125

159

194

219

423

0.5

51

75

94

111

129

216

0

16

31

46

68

77

136

Portland, ME

157

1

120

168

195

234

266

428

0.5

76

108

132

168

199

376

0

39

67

90

130

152

324

Portland, OR

15

1

50

78

102

177

239

296

0.5

39

55

81

114

130

199

0

23

45

60

78

102

128

Rapid City, SD

177

1

139

203

252

312

351

482

0.5

78

111

132

164

183

245

0

16

30

38

53

65

179

Reno, NV

63

1

50

72

89

116

137

191

0.5

36

55

75

105

115

172

0

23

45

68

91

113

159

Salt Lake City, UT

142

1

52

77

89

110

120

171

0.5

39

62

76

96

104

171

0

30

60

75

89

104

171

Sault Ste. Marie, MI

425

1

112

153

183

216

249

439

0.5

66

88

104

125

142

239

0

23

37

47

68

83

188

Seattle, WA

27

1

56

107

138

171

205

210

0.5

45

72

97

122

133

175

0

37

52

75

96

123

151

Spokane, WA

144

1

67

98

116

141

159

227

0.5

45

61

73

84

95

145

0

23

37

45

54

67

112

Springfield, MO

58

1

110

155

179

215

224

292

0.5

70

95

117

142

171

240

0

32

54

76

115

129

227

St. Louis, MO, International Airport

62

1

97

147

170

193

227

344

0.5

66

90

105

126

144

269

0

31

53

68

97

104

194

Topeka, KS

61

1

102

153

192

234

245

291

0.5

64

92

110

132

139

185

0

23

39

52

68

84

167

Wichita, KS

60

1

115

163

209

248

285

326

0.5

71

96

116

137

153

168

0

24

45

57

75

83

158

* Heat fluxes are at the snow-melting surface only. See text for calculation of back and edge heat loss fluxes.


    • Related Articles

    • Possible causes of spill switch issues

      What is a spill switch? A spill switch is a device that is used on venting systems that is designed to stop the combustion process if the exhaust gasses are spilling into the mechanical room.  For category I venting appliances, the spill switches are ...
    • The Armstrong Design Envelope pump vs. variable speed drive mounted on a wall - white paper

      The Armstrong Design Envelope IVS pump is a unique solution available with integrated controls up to 350HP / 250kW.  Configuring a pumping solution to use integrated controls has many advantages over a traditional pump controlled by a variable ...
    • Duravent PolyPro Locking Rings

      Why DuraVent PolyPro? How many locking rings do I need? How do I put these things on? How the heck do I take these things off? Duravent PolyPro simplifies your condensing boiler vent installation.   PRE-ASSEMBLED locking rings - Every vent piece ...
    • Armstrong Design Envelope Pumping With Integrated Sensorless Control - White Paper (PSPC Explained)

      The white paper attached here will explain to you how the PSPC control operates.  It will break down what it means to have sensorless pumping technology and what it means to have parallel pumping technology.  The control marries the two with ...
    • Zoning With tekmar RoomResponse

      How to improve comfort and efficiency using the RoomResponse™ signal During milder conditions and times when heat is added through indoor activity, appliance operation and solar gain, the RoomResponse™ signal requests a lower boiler temperature to ...